635 research outputs found

    Inhomogeneity driven by Higgs instability in gapless superconductor

    Get PDF
    The fluctuations of the Higgs and pseudo Nambu-Goldstone fields in the 2SC phase with mismatched pairing are described in the nonlinear realization framework of the gauged Nambu--Jona-Lasinio model. In the gapless 2SC phase, not only Nambu-Goldstone currents can be spontaneously generated, but the Higgs field also exhibits instablity. The Nambu-Goldstone currents generation indicates the formation of the single plane wave LOFF state and breaks rotation symmetry, while the Higgs instability favors spatial inhomogeneity and breaks translation invariance. In this paper, we focus on the Higgs instability which has not drawn much attention yet. The Higgs instability cannot be removed without a long range force, thus it persists in the gapless superfluidity and induces phase separation. In the case of g2SC state, the Higgs instability can only be partially removed by the electric Coulomb energy. However, it is not excluded that the Higgs instability might be completely removed in the charge neutral gCFL phase by the color Coulomb energy.Comment: 21 pages, 5 figure

    Spacetime Supersymmetry in a nontrivial NS-NS Superstring Background

    Get PDF
    In this paper we consider superstring propagation in a nontrivial NS-NS background. We deform the world sheet stress tensor and supercurrent with an infinitesimal B_{\mu\nu} field. We construct the gauge-covariant super-Poincare generators in this background and show that the B_{\mu\nu} field spontaneously breaks spacetime supersymmetry. We find that the gauge-covariant spacetime momenta cease to commute with each other and with the spacetime supercharges. We construct a set of "magnetic" super-Poincare generators that are conserved for constant field strength H_{\mu\nu\lambda}, and show that these generators obey a "magnetic" extension of the ordinary supersymmetry algebra.Comment: 13 pages, Latex. Published versio

    Thermal Phase Transitions and Gapless Quark Spectra in Quark Matter at High Density

    Full text link
    Thermal color superconducting phase transitions in three-flavor quark matter at high baryon density are investigated in the Ginzburg-Landau (GL) approach. We constructed the GL potential near the boundary with a normal phase by taking into account nonzero quark masses, electric charge neutrality, and color charge neutrality. We found that the density of states averaged over paired quarks plays a crucial role in determining the phases near the boundary. By performing a weak coupling calculation of the parameters characterizing the GL potential terms of second order in the pairing gap, we show that three successive second-order phase transitions take place as the temperature increases: a modified color-flavor locked phase (ud, ds, and us pairings) -> a ``dSC'' phase (ud and ds pairings) -> an isoscalar pairing phase (ud pairing) -> a normal phase (no pairing). The Meissner masses of the gluons and the number of gapless quark modes are also studied analytically in each of these phases.Comment: 15 pages, 6 figure

    Higgs Mechanism in String Theory

    Full text link
    In first-quantized string theory, spacetime symmetries are described by inner automorphisms of the underlying conformal field theory. In this paper we use this approach to illustrate the Higgs effect in string theory. We consider string propagation on M^{24,1} \times S^1, where the circle has radius R, and study SU(2) symmetry breaking as R moves away from its critical value. We find a gauge-covariant equation of motion for the broken-symmetry gauge bosons and the would-be Goldstone bosons. We show that the Goldstone bosons can be eliminated by an appropriate gauge transformation. In this unitary gauge, the Goldstone bosons become the longitudinal components of massive gauge bosons.Comment: 12 pages, Te

    Influence of finite quark chemical potentials on the three flavor LOFF phase of QCD

    Get PDF
    We study in the Ginzburg-Landau approximation, the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of QCD with three flavors and one plane wave, including terms of order O(1/mu). We show that the LOFF window is slightly enlarged, and actually splits into two different regions, one characterized by u-s and d-u pairings and the other with d-u pairs only.Comment: 8 pages, 3 figure

    Gauge Field Fluctuations and First-Order Phase Transition in Color Superconductivity

    Full text link
    We study the gauge field fluctuations in dense quark matter and determine the temperature of the induced first-order phase transition to the color-superconducting phase in weak coupling. We find that the local approximation of the coupling between the gauge potential and the order parameter, employed in the Ginzburg-Landau theory, has to be modified by restoring the full momentum dependence of the polarization function of gluons in the superconducting phase.Comment: 5 pages, 1 figure, Revtex, we have modified our conclusions for the metallic superconducto

    Ginzburg-Landau approach to the three flavor LOFF phase of QCD

    Full text link
    We explore, using a Ginzburg-Landau expansion of the free energy, the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of QCD with three flavors, using the NJL four-fermion coupling to mimic gluon interactions. We find that, below the point where the QCD homogeneous superconductive phases should give way to the normal phase, Cooper condensation of the pairs u-s and d-u is possible, but in the form of the inhomogeneous LOFF pairing.Comment: 8 pages, 4 figures. Eq. (20) corrected. As a consequence figures have been modified to show only the solution with parallel total momenta of the us, ud pairs, as the other configurations are suppressed. Main conclusions of the paper are unchange

    Anisotropic Null String Cosmologies

    Get PDF
    We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers of c^2, the world-sheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth and the first order solutions and we discuss some cosmological implications.Comment: 9 pages, plain Te
    • …
    corecore